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A Plotkin-type upper bound and a Gilbert-type lower bound are 
proved for the feedback-decoding and definite-decoding minimum dis- 
tances respectivdy of binary convolutional codes. In the former case, 
a very simple bound is derived which shows that the ratio G f  feedback 

1. Introduction 

of these bound leads also to the establishment of certain interesti 

in the following sec 
tions e 

for the justification that this results 
venience, the discussion will also b 
less explicitly stated to the c 



of such vectors and *..:e shall consider that t h e  components of iu are 
the K information digits to be encoded a t  hme instant u . A (canonic 
systematic) cofivolutional code of memory order is specified by the 
matrices Go, G1, . . . , Gm where each G. is an  (N - K)X K binary 
matrix. The N encoded digits a t  t i m e  initant u are the components 
of the column vector whose first K components form iu and whose 
last N - K coniponents form the vector given by 

= G i  + G i  +...+ G E u  0 u 1 u-1 m u-m 

where we assume i = 0 if *j < 0 . The components of gu are the 
N -K parity digits Jormed by tiie convolutional code at  t i m e  instant 
u . The rate R of the code is defined as R = K/N . 

It should be noted from (1) that a convolutional code of memory 
order m = 0 is just a systematic linear block code and conversely. 
Hence the theory of convoluaonal codes includes that of block Godes 
as a special case which perhaps accounts for the greater difficulty 
with which distance bounds are derived for the former class of codes. 

2. A Plotkin Upper Bound on Feedback Decoding Minimum Distance 

The usual decoding method for convolutional codes, called feed- 
back decoding (FD) by Robinson [ 21, calls for the decoding estimate 
of Lu to be made from the received digits over t i m e  units u through 
u +-m on the assumption that. iU-l, . . . , i 
rectly decoded. With this assumption, the decoding of id is typical 
of the decoding of any i', and hence the feedback-decoding minimum 
distance,  dFD, is appropriately defined as the fewest number of 
positidns that two encoded sequences with differing d u e s  of & are 
found ,to disagree over the t i m e  span 0 through m . The total number 
of positions within this time span, namely (m + 1)N, is called the 
feedb8ck-decoding constrafnt length and will be denoted as nFD 
By the usual linearity argument, it follows that 

have all been cor- -u-m 

where WH( ) denotes the Hamming weight, i. e. the number of non- 
zero components among the vectors, of the enclosed vectors. 

dpD/nFD will be obtained which as "FD hcreases tends to .the same 
value  as^ the familiar a Plotkin upper bound for block codes 
with the'same rate R . this bound for convolutional -codes will 

Inthe remainder of this section, an  upper bound on the ratio 

led a Plotki The deriv 
e introduction of the following : 



Definition 1: The integer d(m, N, K) is the maximum value of d 
for the class of all convolutiond codes of mexory order 
coding K binary digits per t i m e  instant into N digits. 

In tefmk of the quantity d(m, N, K )  , we next sta 

Lemma 1: d(m, N, KJ (d(m, N-K+1, 1) . 
Proof: Note that the partial minimization of the 

are just the first columns of the original matrices. Hence, f 
code with K information and N encoded digits per t i m e  ins 

N-1 that of the first code. 
Lemma 2 :  For N odd, d(m, N, 1) L N  -t r n ~  . 
Proof: We claim first that when K = 1, there will be a code hav - 

claim follows a 

hence has  weight N .\. But for an  
4 x 4  choice of il, i2, e . .  , b-l, 
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these N vectors must have weight a t  most (N - 1)/2 
any code, we can choose i , i2, . .*, im in order SO that 
has weight at most (N - 11/12 for u = 1; 2> . . e ,  m and the lemma is 
proved. 
Lemma 3: For m even, d(m, N, K) Id(;, 2N, 2K) - Proof: For any code with parameters m =%m*, N, K and defining 
matrices Go, G1,. . . , G 

meters m ,N = ZN and K = 2 K  withdefiningmatrices 
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(t, 5) 

we consider the ney code wi@ pa 
* *  2 d *  

where we deff*ne G-l and Gm+l both to be the all zero matrix. Also, 
we set the N = 2N Vector 

* 
‘ 3  

* *  
L5 = (L2y -2j+l i )  

and set the N - K = 2(N -K) vector 

It is then readily checked dt for this new code, pu satisfles (1) , 
with the matrices Gj of the old cod?. Hence, from (2), it € 0 1 1 0 ~ ~  
that the minimum distance of the new c y  satisfles . 

Of both 

e the righthand side is evaluated for, the old code. Hence the 
minimum clearly occurs with ~ t ,  = 0 (which implies = 0) and 
-1 
from (2) only by a trivial increase in indices by one and hence also 
has value dFD . Hence, we have shown that for m even, given any 
code with parameters m, N and K, we can constnict a second code 
with parameters 3, 2N, and 2K havihg the Same minimum distance 
and thus the lemma is proved. 

evident: I 
Lemma 4: 
‘ 

i #i so that the righthand side of-the preceding equa 3) on kfefs  

The last preliminary result which we sha 

d(m, N, K) Z d ( m  + 1, N, K) a 

We are now in a position to prove the main 



in this case. 

d(m, N, K) - < d [ [ F ] ,  2N - 2K + 1, 1 

which is equivalent to the inequality in the theor 
is proved for all  cases. 

imjnediarely from Theorem 1: 
Recalling that nFD = fm + l)N 

ch is the asyrnptoti se of Theorem 1 €or 
large constraint lengths n provides an  upper bound for the mtio 

[ 3 for the ratio for a block code with rate R and constrain 
length n 

The key Idea in deriving the preceding bound, namely the con 
tent: of lemma 2, was flrst pointed out to th8 author by Jones [ 4) in  
1962. The Content of this lemma .has also been. independently stated. 
by Lin and Lyne'[ 51. The remainder of the derivation, i. e. the nec- 

dFp/"FD that coincides wi Fs: the usual asymptotic Plotkin upper bound 

supplied by the author. 
[ 61 has recently genera- 
l codes defined 

preceding derivations to  

- R). which coincides 
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when N = 5, and equality fot m 5 
succeeded in gencdizing lernma,2 
tree codes of which convolutional c 

Same Algebraic And D!s",l,ncc Propcrtios Of Convolutlonql Coc' 

We digress momentarily to consider the weli-kn 

and we shall refer to the matrix of information vectors in (3) as the 



where i i ( 6 )  = -6 log26 - (1-6) lwz(1-S) is the binary entropy func-. 
tion. Note next that i # 0 guaranteesfhet the L- matrix in (3) has Y 

rank exactly m t  1 so%at any combinadon 6f an i-vector with &#O 
and a p-vector is a solution of (3) for a fraction exactly 2- ( m t l )  of 
all  the codes. Hence, it follows from (4) that If 

n H(-) d - (m+1) 

. <1 , FD "FD 2 

then not all the codes have a combined i-vector and p-vector with 
io + 0 with Hamming weight less than d . Hence it follows that 
there must &st at least one code such that its minimum distance 
satisfies 

' 

Since (m + 1) = nm (1 - R) , this inequality can be written 

for at ltvsf oiw coiyoluthwd owld pt 
nFD . Inequality ( 6 )  i&. the usual asymptotio Gilbert bound [ 91 whioh 
holds for arbitrary R = K/N although the derivation here has been 
restricted to  N = K 4-1 . 

R 4 ~ ~ 1  L , ~ ~ ~ ~ : ~ ~ , ~ ~ i w  IP\(u\(\ 

B. The Gilbert Bound on dDD 

A second decoding method for convolutional codes, called 
$definite decodinq (DD) by Robinson [ 21, calls for the decoding esti- 
mate  of &, to be made without employing previous decoding estimates. 
The purpose of DD is t o  avoid the error-propagatim effect inherent in 
feedback decoding. In particular, we assume that the decoding esti- . 
mate of & is to be based on the received digits corresponding to 

,decoding constmint length nDD . ,*  



Comparison of ( 2 )  and ( 7 )  reveals that-for any code dDD 2 dFB . 
Hence, upper bounds on dFD are a fortiori upper bounds on 
but lower-boqnds on dFD cannot be presumed to be lower boun s on 

dDD * Until further notice, we consider only the case N = K t 1 as 
was done in the preceding subsection. For this case, have 

gD ' 

n DD = ( 2 m + l ) K +  (m4-1)' ( 8 )  

nnd from (3) an modified to account for the fact that we no longer as- 
t i u m  Lu " 0  lor u < 0 . 

-- 1 
* I  

$1 =[ m m - 1  i' 

... 

... 

. * e  i' -0 

In the remainder of this  subsection, we prove a lower bound 
on dDD which we call a "Gilbert bound" not because Of a formal 
similarity to (6) but because the method of proof will be along the- 
same lines that led to ( 6 ) .  That some modification in the proof will 
be required is clear from the fact that when & = (1, 1, . . m ,  1) all 
u, then thel-matrix in ( 9 )  has rank only 1 and hence fully 2-1 or 
one-half of all the codes have the p-vector (0, 0, . e. , 0) occuring 
in combination with this  one particular i -mat r ix .  Fortunately, the 
combined p-vector and L-vector [where we now take the f -vector to 

( L m 9  Lm+19 ' '  I -m i ) ]  have high Hamming weight so that it 
does not follow that this one-half of the codes have small definite- 
decoding minimum distance. For ease of reference, the combinedk- 
veotor and p-vector, i. e. the vector 

' (L -m' - i -m+l' ' " 4 1 i m '  P 0 1  r P  9 0 . ' )  P m ) I 

will be called the code-vector. 
The argument that we shall use to obtain the Gilbert lower 

bound on dDD runs roughly as follows: Let M, be the number of 
code-vectors with i # 0 such that the 1-matrix h a s  rank r and 
WH(code-vector) . Then (assuming that it appears in some code) 
each such code vector appears in a fraction 2"' of all the codes. 
Hence if 



-1 * 
+-.-*-- 

'.$ :. ?.:r.sc'p I.--- 

* &  

then there must exist at least one C 

Definition 2: A 

row includes the first row with B multiplier of 1 . 

r 

(11) holds by the definition of a periodic matrix when j = r; the 



tput segment of % 
ions every K-th s 
shown in Figure 1. 

periodic matrix ( 
unique rK-stage 

output sequences crf 
will prove convenient 







L 
I = z c i  
-1 g l - g  

j = s-m, s-m+l, . . . , t -1  

and 
, 

(19) 

Now suppose that I,,, for any u 2 t, can be written a s  a linear 
combination of preceding rows, i. e. 

But (20)  is equivalent to 

(20' )  

which in particular,- since' u-m c.t 5 u, impties 

But &e terms in  the summation on the-righthand side of (21) Involve 
only for j i n  the range such that (18) is lid,' Hence we may 
use  (la') in  (21) toobtain 

. u  L L \ u  

h=l g=1 .&= ah 'g&.h-g 

.We now recognize, since t -u -.L > u - m, that ( Z O ' ) ,  may be used to 
rewrite the righthand s ide of (22) which yields 

and hence gives a con&dicUon of (19). We conclude that the on1 
rows in thei-matrix (9) which can be written as linear combinatio'n 
af preceding rows are the t- s rows satisfying (16). Since the 
m'trix has m+l rows, Qs rank then is exacly (m t 1) - (t - s) 



m 
3 

claimed. But the rank r is given a s  less than 4- . We have already 
noted that 's  5 r, and hence t = ( m i  1) - r i  s > m  - r . Hence all the 
rows in the reduced i-matrix (14) are rows which satisfy the recursion 
(16) and hence this i-matrix is periodic a s  claimed. Moreover it has 
rank L J r  . - * From ( 9 ) ,  we find that ".' 

Pm-r 

i' 

- m-r 

i ' 1 - 1  
i' -r 

... 

... 

... 
c 

We call the lefthand side of (24) the geduced p-vector and note that 
i-t is m - 2r t 1 component vector uniquely determined by the reduced 
- i -matrix. The outer-fringe of the reduced A-matrix is a 2 (m-r) K t K 
component vector that we call the reduced i -vector. The combination 
of the reduced p-vector and reduced A-vector will be called there-  
duced code-vector. 
Lemma 8 : If the reduced i-matrix is periodic of rank L, then the reduced 
p-vector is an  output segment of an L-stage nonsingular linear FSR 
uniquely determined by the reduced &-matrix. In particular, 

L 
Pj = c P' (c,=l) j = r + L , r t L + L ,  ..., m-r (25) g j-g g=l 

where cg, g = 1, 2, . . . , L, are the FSR connections uniquely de- 
termined by the reduced A-matrix. 
Proof: From (13) we see that the digits in each column of the reduced 
- i -matrix satisfy the recursion (25). But (24) shows that the reduced 
p-vector is always a linear combination of these columns and hence 
a l so  satisfies the recursion (25). 

We are finally in a position to  tie all the pr 
1 together so as to obtain a Gilbert bound on dDD . 

We begin by noting that for r 5 A (m t 11, where A, 0 <A<-ij 
will be chosen later, if the reduced p-vector has fractional weight 

6p, then the entire code-vector has fractional weight 6' satisfying 

- 

Similarly, if the reduced i-vector has fractional weight 6iv then 
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. *  

where the last inequality requires the proviso 

and henceforth we assume that we are considering only m su 
large to satisfy this inequality. 

For a given 6, we wish to demonstrate the existence 
code such that d DD 2 6 n DD . We begin by choosing . 

% 
and 

2Kt1 1 6 <’z: . =-- 
2K 1-2A 

We next divide the set of all possible code-vectors having f 
and fractional weight 6 or less into two sets S1 and S2 de?in 
as follows. S1 contains only those code-vectors such that the - 
matrix has rank r satisfyi-ng r 2 A (m+ 1) and S2 contains those 
for which the i-matrix has rank r, r < A (m t 1) . 

First consider the set S1 . S cannot contain more than all of 
the code vectors of frabtional weigfit 6 or less, and each vector in 
S1 appears in a fraction at most 2’(mi1)A of all codes. Hence th 
fraction F1 of codes which contain any vector in S1 satisfies 

A o n  1 -n {---- H ( 6 ) )  
(3  

DD n~~ ,-(m+i) DD 2Kt1 c j 1 
j =o 

where here and hereafter we use  [ ] to indicate the integer part Of 
the enclosed number. 

teresting. From (26) and (27) we conclude that any vector in S2 
mus; have 3 fractional weight 6i or less  in its reduced i -vect  - and fractional welght 6p or less 1n.its reduced p-vector. Hence, 
tho number of distinct reduced code-vectors found within the vecto 

32 such that the reduced L-rnatrlx has some given rank L is le 
3F&% 

The consideration of set S2 ‘becomes considerably more in 
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, 

Theorem 4 provides our long-sought Gilbert bound for the .spec- 
ial case when- N = R + 1 . We now sketch the manner in whi-ch this 
bound can be extended to arbitrary N > K . In the general case, there 
are ’NLK p-vectors, each of which, say the h-th, satisfies (9) with 

asymptotically useful since it shows d 
ith nDD .for largg nDD . ‘Wagnez, [ llfD 

’ 
ng less than lin 
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Lemmas 5 through 7 were proved some 'ins o g o  by t h e  authoc- 
and used by Kolor [ 131 to obtain what 'we believe is the flrst asym- 
totically useful bound on dDD for ordinary convolutional codes. . 
Kolor restricted himself to the special case K = 1, N = 2 .  It is dif- 
ficult  to compare the K = 1 case  in theorem 3 to Kolor's result since 
Kolor quite sensibly ignored the 'integer part' difficulties which to 
overcome rigorously caused our lemma 5 to be a very loose bound. 
Kolor's major result was a decomposition theorem for parasymmetric 
matrices (matrices of the form (IO) with K = 1) which is 'essentially 
embodied in  our theorem 3. In most respects, the material in section 
is a generalization and simplification of the method used by Kolor for 
K = 1 and N = 2 ,  as well as an attempt to put the theory in  a rigorous 
framework. 

Finally, it should be mentioned that Robinson [ 141 has pro 
an upper bound on dFD that is asymptotically the same as  the bo 
in section 2 and also reduces to the Plotkin block coding bound for 
m = 0 . In the nonasymptotic case, for small. N -K,  the bound 
section 2 is generally superior to Robinson's bound, but is inferi 
general when N - K is large. The virtue of the bound in section 
its conceptual simplicity and ease of derivatf 
Robinson's bound. 

, 
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